organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dimei Chen, Zhiping Yang,‡ Ping Zhong* and Maolin Hu

Department of Chemistry, Wenzhou Normal College, 325027 Wenzhou, People's Republic of China

‡ Current address: Zhangzhou Vocational and Technical College, Zhangzhou, People's Republic of China

Correspondence e-mail: zhongp0512@163.com

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.005 \text{ Å}$ R factor = 0.066 wR factor = 0.186 Data-to-parameter ratio = 13.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-[2,6-Dichloro-4-(trifluoromethyl)phenyl]-5-[(4-dimethylaminobenzylidene)amino]-1*H*-pyrazole-3-carbonitrile

The title compound, $C_{20}H_{14}Cl_2F_3N_5$, is a tricyclic amide with an overall U-shape, each of the three rings being planar. There are $\pi-\pi$ interactions between the pyrazole ring and the benzene ring with the dimethylamine substituent.

Comment

The title compound,(I), is an important starting material for the synthesis of 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(trifluoromethylthio)pyrazole, 5-amino-3cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(trifluoromethylsulfenyl)pyrazole and 5-amino-3-cyano-1-[2,6-di chloro-4-(trifluoromethyl)phenyl]-4-(trifluoromethylsulfonyl)pyrazole, which are all good insecticides (Hatton *et al.*, 1993).

The structure of (I) is shown in Fig. 1, with the atomnumbering scheme. The molecule contains three planar groups, forming an overall U-shape, *viz*. a 2,6-dichloro-4-(trifluoromethyl)phenyl, a pyrazole and a 4-(dimethylamino)phenyl ring. The dihedral angles between the pyrazole and the C3–C8 and C14–C19 benzene rings are 5.0 (3) and 75.78 (12)°, respectively. There are π – π interactions between the pyrazole ring and the C3–C8 benzene ring.

Experimental

Following the method of Hatton *et al.* (1993), reaction of 2,6-dichloro-4-trifluoromethylamine with a suspension of nitrosylsulfuric acid, followed by reaction with a solution of ethyl 2,3-dicyanopropionate in acetic acid, gave 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]pyrazole, which was then reacted with 4-(dimethylamino)benzaldehyde and hydrochloric acid in anhydrous ethanol to give the title compound, (I). Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate/petroleum ether (1:2) solution (m.p. 456–458 K). IR (KBr, ν cm⁻¹): 3130, 3075, 2358, 2234, 1587, 1529; ¹H NMR (CDCl₃): δ 8.77 (*s*,1H), 8.09 (*s*, 2H), 7.62 (*d*, 2H), 7.07 (*s*, 1H), 7.63 (*d*, 2H), 3.07 (*s*, 6H); ¹³C NMR (CDCl₃): δ 165.5 (1C), 155.2 (1C), 154.9 (1C), 138.5 (1C), 136.7 (1C), 133.9 (1C), 132.4 (2C), 128.1 (1C), 126.9 (2C), 126.8 (2C), 123.5 (1C), 114.6 (1C), 112.3 (2C), 97.2 (1C), 40.0 (2C).

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Received 7 February 2005 Accepted 10 February 2005

Online 19 February 2005

Crystal data

 $\begin{array}{l} C_{20}H_{14}Cl_2F_3N_5\\ M_r = 452.26\\ \text{Triclinic, }P\overline{1}\\ a = 6.5692\ (14)\ \text{\AA}\\ b = 12.365\ (3)\ \text{\AA}\\ c = 13.878\ (3)\ \text{\AA}\\ \alpha = 67.312\ (4)^\circ\\ \beta = 80.447\ (4)^\circ\\ \gamma = 86.740\ (4)^\circ\\ V = 1025.6\ (4)\ \text{\AA}^3 \end{array}$

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{min} = 0.863, T_{max} = 0.922$ 5431 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.186$ S = 1.053638 reflections 273 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, $^{\circ}$).

Cl1-C15	1.713 (4)	N3-C14	1.433 (4)
F1-C20	1.285 (7)	N4-C12	1.332 (4)
N1-C3	1.363 (4)	N5-C13	1.140 (4)
N1-C1	1.447 (4)	C10-C11	1.368 (4)
N2-C9	1.281 (4)	C11-C12	1.394 (4)
N2-C10	1.386 (4)	C12-C13	1.436 (4)
N3-N4	1.357 (3)	C17-C20	1.500 (5)
N3-C10	1.371 (4)		
C9-N2-C10	115.7 (2)	N3-C10-N2	119.4 (2)
N4-N3-C10	113.3 (2)	C10-C11-C12	104.9 (3)
N4-N3-C14	118.7 (2)	N4-C12-C11	113.5 (3)
C10-N3-C14	127.8 (2)	N4-C12-C13	121.1 (3)
C12-N4-N3	102.6 (2)	C11-C12-C13	125.4 (3)
N2-C9-C6	124.8 (3)	N5-C13-C12	174.9 (4)
C11-C10-N3	105.7 (3)	F2-C20-F1	108.5 (7)
C11-C10-N2	134.9 (3)		

Z = 2

 $D_x = 1.464 \text{ Mg m}^{-3}$

Cell parameters from 2322

3638 independent reflections

2936 reflections with $I > 2\sigma(I)$

 $w = 1/[\sigma^2(F_o^2) + (0.0899P)^2]$

+ 0.8389*P*] where $P = (F_o^2 + 2F_c^2)/3$

 $\Delta \rho_{\rm max} = 0.67 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.43 \text{ e} \text{ Å}^{-3}$

 $(\Delta/\sigma)_{\rm max} < 0.001$

Mo $K\alpha$ radiation

reflections

 $\mu = 0.36 \text{ mm}^{-1}$

T = 298 (2) K

 $R_{\rm int} = 0.011$

 $\theta_{\rm max} = 25.3^{\circ}$

 $h = -7 \rightarrow 7$ $k = -14 \rightarrow 14$

 $l = -16 \rightarrow 15$

Block, colorless $0.42 \times 0.29 \times 0.23 \text{ mm}$

 $\theta = 2.8 - 24.7^{\circ}$

All H atoms were initially observed in a difference Fourier map but were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H distances in the range 0.93–

Figure 1

The structure of (I), showing the atomic numbering scheme and displacement ellipsoids at the 50% probability level.

0.96 Å and with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$. The high displacement parameters of atoms F1, F2 and F3 indicated the presence of moderate torsional disorder of the trifluoromethyl group, but an attempt to model the group using a disorder model was unsuccessful.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2002); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (No. 20272043) and the Natural Science Foundation of Zhejiang Province (No. M203001).

References

Bruker (2002). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Hatton, L. R., Bunain, B. G., Hawkins, D. W., Parnell, E. W., Pearson C. J. & Roberts, D. A. (1993). US Patent No. 5 232 940.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.